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ABSTRACT
Plant microbiomes have a major influence on forest structure and functions, as well as tree fitness and evolution. However, a 
comprehensive understanding of variations in fungi along the soil–plant continuum, particularly within tree seedlings, under 
global warming is lacking. Here, we investigated the dynamics of fungal communities across different compartments (including 
bulk soil and rhizosphere soil) and plant organs (including the endosphere of roots, stems and leaves) of Schima superba seed-
lings exposed to experimental warming and drought using AccuITS absolute quantitative sequencing. Our results revealed that 
warming and drought significantly reduced the number of specific fungal amplicon sequence variants (ASVs) in the bulk soil 
and rhizosphere soil, respectively. Variations in fungal communities were mainly explained by compartments and plant organs, 
with the composition of endophytic fungal communities within leaves (primarily attributed to species gain or loss) being most 
influenced by climate change. Moreover, warming significantly reduced the migration of Ascomycota, soil saprotrophs, wood 
saprotrophs and yeasts from the bulk soil to the rhizosphere soil but increased that of plant pathogens from the roots to the stems. 
Drought significantly decreased the absolute abundances of Chytridiomycota, Glomeromycota and Rozellomycota, as well as the 
migration of ectomycorrhizal fungi from the bulk soil to the rhizosphere soil but increased that of plant pathogens. Warming 
could indirectly reduce leaf area by increasing the diversity of leaf pathogens. These findings have potential implications for 
enhancing the resilience and functioning of natural forest ecosystems under climate change through the manipulation of plant 
microbiomes, as demonstrated in agroecosystems.

1   |   Introduction

Forests are substantial terrestrial carbon sinks, storing ap-
proximately 45% of terrestrial carbon (Bonan  2008) and ac-
counting for 80% of global plant biomass (Chapin, Matson, 

and Vitousek 2011). With nearly half of Earth's natural forests 
lost due to human activities (Crowther et al. 2015), forests now 
face drastic challenges caused by global warming (IPCC 2023). 
Increasing temperatures can reduce the soil water content, 
escalating the frequency, duration and intensity of drought 
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(Samaniego et  al.  2018). Drought, a defining characteristic of 
this century (Schwalm et al. 2017), is expected to coincide with 
a warming climate, ultimately diminishing forest resilience and 
curtailing carbon sequestration (Wolf and Paul-Limoges 2023). 
Under drought conditions, forests may change from being car-
bon sinks that absorb carbon dioxide to carbon sources that 
release it under future climate change (Brienen et  al.  2015). 
Carbon emissions from forests could have considerable positive 
feedback effects on global climate change (Cox et al. 2000), ex-
acerbating the climate crisis and posing a threat to forest health 
(Trumbore, Brando, and Hartmann 2015). However, while plant 
adaptation to climate change is primarily influenced by plant-
associated microbiomes (Trivedi et  al.  2022), the responses of 
plant microbiomes to warming and drought in forest ecosys-
tems remain largely unknown (Mishra, Hättenschwiler, and 
Yang 2020).

A multitude of microbes residing in various compartments (e.g., 
rhizosphere soil) and plant organs (including endosphere of 
roots, stems and leaves) collectively form the plant microbiomes 
(Turner, James, and Poole 2013; Vandenkoornhuyse et al. 2015). 
These microbiomes play vital roles in enhancing plant growth 
and nutrient uptake (Hardoim et  al.  2015), defending against 
pathogens (Vannier, Agler, and Hacquard 2019) and improving 
plant resilience to environmental stresses (Trivedi et al. 2020). 
Endophytes have been shown to have a positive impact on the 
stress resistance of trees (Blumenstein et  al.  2015; Rodriguez 
and Redman  2008). The distinction of microbial communi-
ties within the root endosphere and within the rhizosphere 
soil likely arises from the host selection of unique microbial 
consortia capable of penetrating and thriving in the host envi-
ronment (Gottel et  al.  2011). Understanding the variability in 
host-selected microbiomes, from soil to plant organs, is essen-
tial for comprehending how microbiomes influence plant health 
(Cregger et al. 2018).

The structure and functions of plant microbiomes undergo 
changes in response to abiotic stresses and environmental 
stimuli, such as climate change (Lata et  al.  2018; Rodriguez 
and Redman  2008). Plants may actively cooperate with mi-
crobes as a defence mechanism (Durán et  al.  2018; Lau and 
Lennon 2012), leading to the enrichment of specific microbes 
that enhance plant stress tolerance (Trivedi et al. 2020, 2021). 
Given that the manipulation of plant microbiomes hold sig-
nificant potential for reducing greenhouse gas emissions 
(Singh et  al.  2010), many national and international policy 
agencies have identified enhancing plant productivity in re-
sponse to climate change through the strategic manipulation 
of plant microbiomes as a top priority (Trivedi et  al.  2020). 
In particular, plant microbiome engineering has emerged as 
a strategy to combat drought stress in agroecosystems (Ali 
et al. 2022), where most of the related research has focused on 
root-associated microbiomes (Santos-Medellin et al. 2021; Xu 
et al. 2018) due to the essential roles of roots in nutrient and 
water uptake from the soil. However, there is a lack of under-
standing of plant microbiomes in forest ecosystems compared 
to those in farmland ecosystems (Mishra, Hättenschwiler, and 
Yang 2020; Terhonen et al. 2019), despite the crucial roles that 
forests play in combating climate change (Bonan 2008). Some 
studies have emphasised the positive roles of microbiomes 
in assisting trees in coping with drought (Khan et  al.  2016; 

Zhang, Zhang, and Huang 2014), suggesting the potential for 
enhancing forest stability through microbiome interventions. 
Bridging this knowledge gap is critical for enhancing forest 
resistance and resilience to global warming through the ma-
nipulation of tree microbiomes, as demonstrated in agroeco-
systems (Trivedi et al. 2022).

The response of forests to climate change is largely medi-
ated by microbes, particularly fungi and bacteria (Baldrian, 
López-Mondéjar, and Kohout 2023). Fungi, which are known 
to exhibit a stronger host preference than bacteria (Chen 
et  al.  2022; Tedersoo et  al.  2010), are more closely associ-
ated with plants (Gan et  al.  2022) and play a pivotal role in 
forest ecosystems. The majority of terrestrial plant species 
form symbiotic relationships with mycorrhizal fungi (van der 
Heijden et al. 2015), which in turn has a profound impact on 
bacterial communities within plant organs (Akyol et al. 2019; 
Poosakkannu, Nissinen, and Kytöviita 2017). In times of cli-
mate change–cased environmental stress, such as drought, 
the impact on these relationships may become increasingly 
profound. Drought can directly affect plant physiology, such 
as decreasing the hydraulic conductance (Choat et al. 2018), 
and also indirectly influence plant health by altering the dy-
namics of the fungal communities (Schimel 2018). At present, 
the proliferation of pathogens associated with climate change 
is regarded as a significant threat to forest health worldwide 
(Singh et al. 2023; Trumbore, Brando, and Hartmann 2015). 
For instance, elevated temperatures have amplified the sus-
ceptibility of American chestnut to infections caused by the 
fungal pathogen Phytophthora spp., leading to severe tree 
mortality events across North America (Gustafson et al. 2022). 
Moreover, the expansion of Phytophthora cinnamomi, exacer-
bated by global warming, is likely to exert a substantial det-
rimental effect on native plant populations across various 
regions around the world (Rigg, McDougall, and Liew  2018; 
Thompson, Levin, and Rodriguez-Iturbe 2014). Therefore, it is 
crucial to understand how climate change affects fungal com-
munities in forest ecosystems.

Here, we conducted a pot experiment involving six distinct 
treatments (warming and/or drought) within two climatic 
chambers to investigate the alterations in fungal communi-
ties. This study encompasses both bulk soil and rhizosphere 
soil, as well as various plant organs, including the endosphere 
of roots, stems and leaves of Schima superba seedlings. As a 
representative broadleaf evergreen tree species widely distrib-
uted in the subtropical forests of southern China, this focal 
tree species plays a dominant role in our study region (Kong 
et al. 2023). It acts as a foundational element that influences 
both the composition and characteristics of the local commu-
nity (Yu et  al.  2020). Due to its exceptional fire resistance, 
this species is widely recognised as a preferred option for 
afforestation in firebreaks (Li et al. 2023; Zhang et al. 2013). 
Additionally, wood of this species is used in furniture mak-
ing and in construction owing to its high hardness (Zhang 
et al. 2019). In a previous study involving seven tree species, 
which was also one part of the current research, it was ob-
served that climate change exerted the most significant impact 
on the composition of fungal communities within the rhizo-
sphere soil of S. superba (Wu et al. forthcoming; Figure S1). In 
this study, we used absolute abundances to measure the size 
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of fungal communities associated with S. superba, and our 
primary objective was to (i) explore how climate change influ-
ences fungal community composition along the soil–tree seed-
ling continuum and its relative contribution to variations in 
fungal communities in each compartment and plant organ; (ii) 
assess whether fungal community size decreases in response 
to increasing compartment (as well as plant organ) effects and 
identify indicators along the soil–tree seedling continuum; 
and (iii) investigate how climate change affects the migration 
of fungi from soil to aerial plant organs.

2   |   Materials and Methods

2.1   |   Seed Collection and Germination

We collected seeds of S. superba within a 25-ha (500 × 500 m) 
stem-mapped forest plot (centred on 27°45′43″ N, 119°11′53″ E) 
located in Baishanzu Nature Reserve, Zhejiang Province, 
China. As an integral component of the Forest Global Earth 
Observatory (ForestGEO) network (https://​fores​tgeo.​si.​edu/​), 
this plot serves as a critical node in the global monitoring of 
forest ecosystem dynamics. To ensure that the seeds were de-
void of surface contaminants and to minimise the potential 
for pathogen infection, we used a comprehensive surface ster-
ilisation process. This involved immersion in 70% ethanol for 
1 min, followed by 3% sodium hypochlorite for 3 min, followed 
by 1 more minute in 70% ethanol. The seeds were then rinsed 
with ion-free water to remove any chemical residues and then 
air-dried before being stored in a refrigerator at 4°C. In April 
2022, we initiated the germination of these seeds in trays 
filled with sterilised sand in a climate chamber. The chamber 
was programmed to provide 16 h of daylight, with a light in-
tensity of 20 klx. The temperature regime in the chamber was 
maintained at 21°C/15°C (light/dark), and the relative humid-
ity was approximately 65%.

2.2   |   Soil Mixture and Seedling Transplanting

In June 2022, we collected soil samples from the 0–20-cm depth 
under adult individuals of S. superba within the Baishanzu for-
est plot. Then, we carefully passed them through a sterilised 
2-mm sieve to eliminate any visible debris such as stones and 
roots. We also collected common background forest soil to min-
imise the potential impact of differences in soil physicochemical 
properties among the selected tree species. This soil was also 
sieved through a 2-mm mesh and subjected to gamma-radiation 
sterilisation at a dosage of 25 KGray (Zhengjiang Zhengshi 
Irradiation Technology Co. Ltd., Zhengjiang, China) (McNamara 
et  al.  2003). For each pot (18 cm diameter × 19 cm height), we 
created a soil mixture that consisted of 20% (by volume) alive 
in situ soil as inocula, 50% gamma-sterilised background forest 
soil and 30% gamma-sterilised substrate soil (simulating the ad-
dition of nutrients from litters in the field) totalling 3.5 L. This 
specific composition was designed to ensure that the dynamics 
of the microbial communities would be influenced by the biotic 
characteristics of the inoculant, rather than by abiotic factors. A 
single seedling, approximately 2 weeks of age, was transplanted 
into the centre of each pot. We took care to replace any seedlings 
that perished or showed signs of poor growth due to transplant 

shock within the initial week, ensuring the health and viability 
of our experimental plants.

2.3   |   Experimental Manipulations

The experiment had a 2 × 3 factorial design with two levels of 
temperature, including no warming and elevated (+3°C), which 
we chose based on projected global increases of between 2.7°C 
and 3.2°C by the end of this century (UNEP 2021, 2022). We also 
examined three levels of drought intensity, including no drought, 
moderate drought and severe drought. This led to a total of six 
treatment combinations: (a) a control without warming and 
drought (CK); (b) moderate drought without warming (D1); (c) 
severe drought without warming (D2); (d) warming alone (W); 
(e) moderate drought combined with warming (WD1); and (f) 
severe drought in conjunction with warming (WD2) (Figure S1). 
The pot experiment was conducted in two climate chambers, 
each designed to simulate distinct climatic conditions. We set 
the temperature to 21°C/15°C (light/dark) for the no-warming 
chamber and 24°C/18°C (light/dark) for the warming cham-
ber while ensuring a uniform light intensity (20 klx), a con-
sistent photoperiod (16/8 h light/dark) and relative humidity 
(~65%) across both chambers. We simulated the precipitation 
conditions in the climate chambers based on field monitoring 
data from the Baishanzu forest plot over 6 years (2016–2021) 
before the experiment commenced (Table  S1; Supplementary 
Methods). In this study, drought conditions were simulated by 
reducing the frequency of watering. Specifically, the soil mois-
ture regime was manipulated by watering the pots every 3 days 
for the control treatment, once a week for the moderate drought 
treatment and every 2 weeks for the severe drought treatment. 
The soil gravimetric moisture content of the pots was calibrated 
to sustain 70% of their water holding capacity with each wa-
tering. It was detected that both warming and drought could 
substantially reduce the moisture content of potted soil prior to 
each watering event (Figure S1). This drought treatment design 
reflects the projected alterations in precipitation patterns under 
global climate change scenarios, where reductions in rainfall 
frequency are expected to be accompanied by increases in the 
intensity of rainfall events (Shortridge 2019; Zhang et al. 2021). 
Each treatment was replicated 10 times, resulting in a total of 
60 pots. During the initial acclimatisation period of the first 
2 weeks, all pots received uniform watering and were watered 
3–4 times per week. After this uniform watering phase, the pots 
were subjected to the gravimetric watering regime to maintain 
the targeted moisture levels throughout the experiment.

2.4   |   Pot Harvesting

Given the limited resistance of seedlings to persistent drought 
stress, potted seedlings were harvested after 20 weeks of the pot 
experiment to ensure an adequate supply of alive seedlings for 
subsequent analyses. Given the relatively high costs associated 
with absolute quantitative sequencing and the constraints im-
posed by limited funding, we randomly selected five pots with 
alive seedlings per experimental treatment, thereby ensuring a 
representative and reliable dataset for subsequent analyses. To 
establish a one-to-one correspondence between each soil sample 
and the seedling within the same pot, we opted against creating 

 1365294x, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17652 by E
ast C

hina N
orm

al U
niversity, W

iley O
nline L

ibrary on [22/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://forestgeo.si.edu/


4 of 16 Molecular Ecology, 2025

a composite sample for the five selected samples. This approach 
facilitated comparative analyses among individual specimens. 
Subsequently, we carefully extracted the seedlings, rhizosphere 
soil and bulk soil (see below).

2.5   |   Soil and Seedling Sample Processing

First, seedlings were removed from their pot and carefully 
shaken by hand to ensure that any loosely bound soil particles 
around the roots were completely removed while taking care not 
to damage the roots. Next, each root was placed in a 500-mL 
beaker, and the soil particles adhering to the roots were rinsed 
with phosphate-buffered saline (PBS) and transferred to a 50-
mL tube. This process allowed us to obtain rhizosphere soil. 
Subsequently, the collected rhizosphere soil samples were cen-
trifuged at 8000 rpm for 10 min. The resulting pellet was then 
stored at −80°C for genomic DNA extraction. We passed the 
bulk soil samples through a sterilised 2-mm sieve to remove vis-
ible roots. Each sample was divided into three subsamples: one 
for molecular analysis (stored at −80°C), another for the anal-
ysis of soil physicochemical properties (air- or oven-dried) and 
the third for measurements of ammonium (NH4

+-N) and nitrate 
(NO3

−-N) contents (stored at 4°C). For the extraction of endo-
phytic DNA from plant organs, approximately 5 g of plant tissue, 
including roots, stems and leaves, was processed separately fol-
lowing a previously described method for surface sterilisation 
(Gao et al. 2021). It is important to note that the sterilisation pro-
cedure utilised sodium hypochlorite and effectively removed ap-
proximately 98% of the microbes on the exterior of plant organs 
(Richter-Heitmann et al. 2016), precluding the characterisation 
of the plant surface–associated fungal communities. The treated 
plant samples were frozen at −80°C until DNA extraction. 
Overall, each sample of the soil–tree seedling continuum was 
systematically divided into two compartments (the bulk soil 
and rhizosphere soil) and three plant organs (the endosphere of 
roots, stems and leaves).

2.6   |   DNA Extraction and Fungal ITS rRNA Gene 
Amplification

All samples from different compartments and plant organs 
were selected for fungal identification using the AccuITS ab-
solute quantification sequencing method (Yang et  al.  2023). 
This method allowed us to determine the absolute abundance 
of fungi accurately and reliably. Genomic DNA from each sam-
ple was extracted using the FastDNA SPIN Kit for Soil (MP 
Biomedicals, Santa Ana, CA, USA) following the manufactur-
er's instructions. The integrity of the extracted DNA was as-
sessed through gel electrophoresis, and the concentration and 
purity were quantified using a Qubit 3.0 spectrophotometer 
(Thermo Fisher Scientific, USA). To achieve absolute quantifica-
tion, spike-in internal standards with known gradients of copy 
numbers were added to the experimental DNA samples (Smets 
et  al.  2016). This allowed for back-normalisation and calcula-
tion of the absolute abundances of all community members. The 
primers ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and 
ITS2R (5′-GCTGCGTTCTTCATCGATGC-3′) were used to am-
plify the ITS1 hypervariable regions (Luan et al. 2020). The PCR 
reaction mixture contained 1 μL of 10× Toptaq Buffer, 0.8 μL of 

2.5 mM dNTPs, 0.2 μL of each primer (10 μM), 0.2 μL of Toptaq 
DNA Polymerase and 1 μL of template DNA and ddH2O to a 
final volume of 10 μL. The PCR programme was as follows: 94°C 
for 2 min, followed by 25–27 cycles of denaturation at 94°C for 
30 s, annealing at 55°C for 30 s and elongation at 72°C for 1 min, 
with a final extension at 72°C for 10 min (ABI 2720 Thermal 
Cycler, Thermo Fisher Scientific, USA). All amplification reac-
tions were performed in triplicate, and the PCR products were 
gel-purified using VAHTS DNA Clean Beads (Vazyme, China). 
The purified amplicons were subjected to paired-end sequenc-
ing (2 × 250 bp) on the Illumina NovaSeq platform at Genesky 
Biotechnologies Inc. (Shanghai, China).

The raw sequencing data were processed in QIIME2 (Bolyen 
et al. 2019). Adaptor and primer sequences were trimmed using 
the Cutadapt plugin. Quality control and assignment of ampli-
con sequence variants (ASVs) were performed using the DADA2 
plugin (Callahan et  al.  2016). Taxonomic assignments of ASV 
representative sequences were performed using the UNITE 
database (version 9.0) (Nilsson et  al.  2019) for ASVs. Spike-in 
sequences were identified, and reads were counted. A standard 
curve was generated for each sample based on the read-counts 
versus spike-in copy number. The absolute copy number of 
each ASV in each sample was calculated using the correspond-
ing read-counts. The spike-in sequences, which are not part of 
the sample flora, were removed from the subsequent analysis. 
Fungal absolute abundances were expressed as copies per gram 
of freeze-dried soil or plant tissue. In total, there were 8890 fun-
gal ASVs in 150 samples (six treatments × five replicates × (two 
compartments + three plant organs)).

2.7   |   Statistical Analyses

All statistical analyses were conducted using R (version 4.3.2). 
To assess the effects of experimental warming and drought 
on fungal communities, we examined the richness, absolute 
abundance, number of specific ASVs within each compart-
ment and plant organ, and number of shared ASVs across 
compartments and plant organs. The percentage increase or 
decrease in the number of specific or shared ASVs was quanti-
fied by calculating the ratios of the difference in the number of 
specific or shared ASVs between warming and non-warming 
conditions (as well as between drought and non-drought con-
ditions) to the number of that under non-warming condition 
(as well as under non-drought condition). We conducted two-
way ANOVAs (MacFarland and Yates 2021) to test the effects 
of warming and drought on fungal communities in a full 
two-factorial design, ensuring that the assumptions of nor-
mality and homoscedasticity were met. When necessary, the 
data were log-transformed to achieve normality (West 2022). 
In cases where these assumptions were not satisfied, we em-
ployed the non-parametric Scheirer–Ray–Hare test as an al-
ternative (Mangiafico 2024). The effects of warming, drought 
and compartments (as well as plant organs) on fungal absolute 
abundances were modelled using generalised linear models 
(GLMs) via the glm function from the stats package. To eluci-
date the relationships between fungal community composition 
and soil properties, we utilised the mantel_test function from 
the linkET package (Huang 2021). Moreover, indicator species 
analysis was conducted using the multipatt function from the 
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indicspecies package (De Cáceres and Legendre 2009). Fungal 
functional groups, that is, ectomycorrhizal fungi (EMF), plant 
pathogens, soil saprotrophs, wood saprotrophs, litter sapro-
trophs, mycoparasites and yeasts, were categorised based on 
the FungalTraits database (Põlme et al. 2021).

Fungal β-diversity was quantified using the Bray–Curtis 
distance matrices and visualised through principal coor-
dinate analysis (PCoA) (Gao et  al.  2020). To assess the sig-
nificance of fungal community dissimilarity under different 
treatments along the soil–tree seedling continuum, we used 
PERMANOVA as implemented in the adonis2 function (with 
the argument by = margin) in the vegan package (Oksanen 
et  al.  2022). We then disentangled the separate effects of 
species turnover (which is defined as the extent of changes 
in species composition along predefined gradients; Anderson 
et  al.  2011; Vellend  2001) from changes in species richness 
among treatments on each compartment and plant organ 
using the beta.pair function in the betapart package (Baselga 
et al. 2023). Note that species turnover is different from spe-
cies loss (which refers to the absence of some species from cer-
tain sites; Baselga 2009) and species dispersion (which refers 
to the unidirectional movement of individuals away from their 
place of birth; Levin et al. 2003; Tamme et al. 2014). In these 
analyses, we partitioned the total β-diversity into two indices, 
where βBTU is the turnover component of the Bray–Curtis dis-
similarity and βBNE is the species gain or loss component of the 
Bray–Curtis dissimilarity.

Causal path modelling was used to explore the direct and in-
direct effects of warming and drought on the seedling traits, 
using the lavaan R package (Rosseel 2012). The first principal 
coordinate deprived from the PCoA conducted on the relevant 
Bray–Curtis dissimilarity matrix, using the vegan package 
(Oksanen et  al.  2022), was employed to represent the fun-
gal community structure. All predictors were standardised 
to have a mean of 0 and an SD of 1. Support for the causal 
path models was evaluated with the following criteria: a non-
significant Chi-square test (p > 0.05), goodness-of-fit index 
> 0.90 and root-mean-square error of approximation < 0.08 
(Schermelleh-Engel, Moosbrugger, and Müller  2003). Partial 
least-squares path modelling was used to evaluate the direct 
and indirect effects of climate change on fungal commu-
nities, using the plspm R package (Sanchez, Trinchera, and 
Russolillo 2024).

A source-tracking analysis was employed to estimate the po-
tential sources of the fungal communities in each compart-
ment and plant organ. Specifically, the first step in developing 
a source model of the plant microbiome involves establishing 
an a priori model based on known sources and relationships 
among fungi present in different compartments and plant 
organs (Xiong et  al.  2021). Subsequently, the model was ex-
amined using SourceTracker (Knights et  al.  2011) based on 
the Bayesian approach with default parameters. To provide a 
deeper understanding of how warming and drought influence 
the distribution and abundance of fungal species, we intro-
duced two novel metrics: the species abundance loss (SAL) 
and the species relative migration ratio (SRMR). These indices 
were designed to quantify the directional changes in fungal 
communities in response to our experimental treatments. The 

SAL was calculated as the difference in absolute abundance 
between the lower and upper compartments or plant organ 
of the soil–tree seedling continuum, which reflects the loss 
of fungal species in the lower compartment or plant organ as 
they migrate upward. The SRMR was the ratio of the abso-
lute abundance of fungi in the upper compartment or plant 
organ to that in the lower compartment or plant organ. This 
calculation provided a measure of the relative migration or 
movement of fungal species from the lower to the upper com-
partment or plant organ, indicating the colonisation status of 
the species. The effects of warming and drought on both the 
SAL and SRMR along the soil–tree seedling continuum were 
also tested by two-way ANOVAs.

3   |   Results

3.1   |   Climate Change Significantly Decreases 
the Number of Specific ASVs in the Bulk Soil 
and Rhizosphere Soil

Our results showed that the rhizosphere soil had the great-
est number of specific ASVs and the greatest fungal richness 
(Figures  S2 and S3). Warming and drought significantly de-
creased the number of specific ASVs (as well as fungal rich-
ness) in the bulk soil (specific ASVs: 39.67%; richness: 30.33%; 
p < 0.001) and rhizosphere soil (specific ASVs: 18.30%–25.88%; 
richness: 14.37%–17.49%; p < 0.01), respectively (Figure  1a; 
Figure S4). The number of shared ASVs between the bulk soil 
and rhizosphere soil also decreased significantly in response to 
warming (24.19%, p < 0.01; Figure  1a). Moisture and available 
phosphorous (AP) were the strongest soil variables influencing 
fungal communities in both the bulk soil and rhizosphere soil 
(Figure 1b). Total nitrogen (TN, p < 0.05) and total phosphorus 
(TP, p < 0.01) also significantly affected the fungal communities 
in the bulk soil and rhizosphere soil, respectively (Figure  1b). 
Moreover, drought significantly decreased moisture (21.44%–
29.25%, p < 0.01) but significantly increased the content of TP 
(5.28%–11.24%, p < 0.001) and AP (67.31%–82.31%, p < 0.001; 
Figure S5). Warming also significantly increased the TP content 
(4.99%, p < 0.05; Figure S5).

3.2   |   Climate Change Exerts the Most Pronounced 
Influence on Fungal Community Composition 
Within the Leaf Endosphere

PCoA coupled with PERMANOVA indicated that the varia-
tions in fungal communities were mainly explained by com-
partments and plant organs (R2 = 0.12, p = 0.001), followed 
by warming (R2 = 0.02, p = 0.002) and drought (R2 = 0.02, 
p = 0.003) (Figure 2a). Hierarchical clustering analysis revealed 
clear and separate clustering among the bulk soil, rhizosphere 
soil, roots, stems and leaves (Figure 2b). There was a significant 
difference in fungal communities between the soil (including 
bulk soil and rhizosphere soil) and the endosphere (including 
the endosphere of roots, stems and leaves) (Figure S6). Within 
each compartment and plant organ, the intensity of the cli-
matic effects on the fungal community varied (Figure 2c). We 
found a dominant influence of climatic treatments on leaf fungi 
(R2 = 0.46, p = 0.001), followed by rhizosphere soil (R2 = 0.31, 
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6 of 16 Molecular Ecology, 2025

p = 0.001), bulk soil (R2 = 0.26, p = 0.001), stems (R2 = 0.19, 
p = 0.041) and roots (R2 = 0.19, p = 0.135) (Figure 2c; Figure S7). 
Specifically, the fungal community compositions in the rhizo-
sphere soil (warming: R2 = 0.10, p = 0.001; drought: R2 = 0.12, 
p = 0.006) and leaves (warming: R2 = 0.22, p = 0.001; drought: 
R2 = 0.13, p = 0.011) were significantly affected by both warm-
ing and drought (Figure S7). Warming also notably altered the 
fungal community compositions in the bulk soil (R2 = 0.08, 
p = 0.005) and roots (R2 = 0.06, p = 0.032) (Figure S7). Moreover, 

the shifts in community composition among treatments in the 
bulk soil, rhizosphere soil, roots and stems were primarily at-
tributed to species turnover, while the differences in the leaves 
were mainly due to species gain or loss (Figure 2d). The partial 
least-squares path modelling result showed that climate change 
not only directly affected fungal communities (standardised 
direct coefficient = −0.55) but also indirectly affected fungal 
communities by altering plants (standardised indirect coeffi-
cient = −0.16) (Figure S8).

FIGURE 1    |    Climate change significantly decreases the number of specific and shared ASVs in the bulk soil and rhizosphere soil. (a) The number of 
specific and shared ASVs in the bulk soil and rhizosphere soil under different treatments. Boxplots are shown, where the thick horizontal line shows 
the median, boxes represent the first and third quartiles and whiskers represent either the minimum and the maximum values of the data or 1.5 times 
the interquartile range of the data. Asterisks indicate significant results from the two-way ANOVA. ***p < 0.001 and **p < 0.01. The small circles rep-
resent the raw data points, which are horizontally jittered to avoid overlap. CK, neither warming nor drought; D1, moderate drought alone; D2, severe 
drought alone; W, only a 3°C increase in temperature; WD1, moderate drought plus warming; WD2, severe drought in conjunction with warming. (b) 
Relationships of the fungal community composition in each compartment and plant organ with soil properties. Edge width corresponds to Mantel's r 
value, and the edge colour denotes the statistical significance. ***p < 0.001, **p < 0.01 and *p < 0.05. Pairwise correlations of these variables are shown 
with a colour gradient denoting Spearman's correlation coefficient. AK, available potassium; AP, available phosphorous; NH4

+-N, ammonium nitrogen; 
NO3

−-N, nitrate nitrogen; OC, organic carton; TN, total nitrogen; TP, total phosphorus. [Colour figure can be viewed at wileyonlinelibrary.com]
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3.3   |   Climate Change Significantly Alters 
the Absolute Abundance of Fungal Phyla

On the soil–tree seedling continuum, Basidiomycota and 
Ascomycota were the most dominant groups in the belowground 
and aboveground parts, respectively (Figure  3a). Overall, com-
partments and plant organs (p = 7.85e-14), rather than climate fac-
tors (warming: p = 0.53; drought: p = 0.27), significantly affected 
the total fungal absolute abundance (Figure 3a). Specifically, the 

total fungal absolute abundance was significantly decreased from 
the bulk soil to the leaves (Figure 3b). Only the total fungal ab-
solute abundance in the rhizosphere soil (p = 0.009) and leaves 
(p = 0.008) was significantly decreased in response to warm-
ing and the interaction of warming and drought, respectively 
(Table  S2). The abundances of Chytridiomycota (p = 5.62e-03), 
Glomeromycota (p = 5.53e-03) and Rozellomycota (p = 0.02) were 
significantly negatively affected by drought (Table S3). Moreover, 
warming significantly decreased the absolute abundance of 

FIGURE 2    |    Variations in the fungal β-diversity along the soil–tree seedling continuum under different treatments. (a) Principal coordinate analysis 
(PCoA) ordinations of the Bray–Cutis dissimilarity matrices with permutational analysis of variance (PERMANOVA), showing a significant association 
of the fungal community composition with compartments and plant organs (R2 = 0.12), warming (R2 = 0.02) and drought (R2 = 0.02). ***p < 0.001 and 
**p < 0.01. (b) Hierarchical clustering based on the Bray–Curtis distances of fungal ASVs from all samples (n = 150). Samples were clustered according to 
Ward.D2 method. (c) Contributions of treatments to the variations in fungal communities in each compartment or plant organ based on PERMANOVA. 
***p < 0.001 and *p < 0.05. (d) Partitioning of the total β-diversity (Bray–Cutis index) among treatments into the components of species turnover (βBTU) 
and species loss or gain (βBNE) along the soil–tree seedling continuum. Boxplots are shown, where the thick horizontal line shows the median, boxes rep-
resent the first and third quartiles and whiskers represent either the minimum and the maximum values of the data or 1.5 times the interquartile range 
of the data. Asterisks indicate significant differences between βBTU and βBNE under the same treatment according to t-test. ***p < 0.001, **p < 0.01 and 
*p < 0.05. CK, neither warming nor drought; D1, moderate drought alone; D2, severe drought alone; W, only a 3°C increase in temperature; WD1, moder-
ate drought plus warming; WD2, severe drought in conjunction with warming. [Colour figure can be viewed at wileyonlinelibrary.com]
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8 of 16 Molecular Ecology, 2025

Ascomycota in the rhizosphere soil (p = 1.53e-04) and roots 
(p = 0.044) (Figure S9). To further ascertain which microbial taxa 
were responsible for the observed community differences among 
compartments and plant organs, we used species indicator analy-
sis to discover significant associations between microbial taxa and 
compartments (as well as plant organs). The full lists of indicators 
and their corresponding indicator values can be found in Table S4, 
which revealed 58 indicator genera in the bulk soil, 40 in the rhi-
zosphere soil, 4 in the roots, 52 in the stems and 11 in the leaves.

3.4   |   Climate Change Drives Changes in Specific 
Functional Groups

Different functional groups of various compartments and plant 
organs respond differently to climate change. For example, 
warming significantly reduced the absolute abundance of EMF 
in the bulk soil (38.45%, p = 0.02) and that of plant pathogens 
(66.17%, p = 0.02), soil saprotrophs (70.85%, p = 3.52e-05) and 
yeasts (78.79%, p = 0.003) in the rhizosphere soil but significantly 

increased that of mycoparasites (213.23%, p = 0.01) and yeasts 
(291.61%, p = 0.004) in the leaves (Table  S5). Drought signifi-
cantly reduced the absolute abundance of EMF in the rhizo-
sphere soil (53.74%–82.92%, p = 0.002) but significantly increased 
that of mycoparasite in the bulk soil (89.82%–91.43%, p = 0.04) 
(Table S5). Furthermore, warming led to a significant increase 
in the richness and phylogenetic diversity of leaf plant patho-
gens, and specific pathogens existed only in specific climatic 
treatments (Figure 4a,b). Most notably, causal path modelling re-
sults showed that there was an indirect causal pathway between 
warming and leaf area mediated by pathogen phylogenetic diver-
sity (Figure 4c), but no mediating role of pathogens was observed 
in other compartments and plant organs (Figure S10).

3.5   |   Climate Change Significantly Influences 
the Migration of Fungi From Soil to Plant Organs

The findings, derived from the source model of plant micro-
biome, suggest that plant-associated fungal communities 

FIGURE 3    |    Fungal community composition and total absolute abundance along the soil–tree seedling continuum. (a) Fungal community com-
position at the phylum level along the soil–tree seedling continuum under different treatments. Asterisks depict significant results from generalised 
linear models. ***p < 0.001. Statistical significance is based on Wald type II χ2 tests (n = 150). The circle size is proportional to the fungal absolute 
abundances. Different colours indicate different fungal phyla. (b) The total fungal absolute abundance decreased significantly from the bulk soil 
to the leaves under different treatments. Boxplots are shown, where the thick horizontal line shows the median, boxes represent the first and third 
quartiles and whiskers represent either the minimum and the maximum values of the data or 1.5 times the interquartile range of the data. CK, neither 
warming nor drought; D1, moderate drought alone; D2, severe drought alone; W, only a 3°C increase in temperature; WD1, moderate drought plus 
warming; WD2, severe drought in conjunction with warming. [Colour figure can be viewed at wileyonlinelibrary.com]
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predominantly originated from bulk soil and underwent a pro-
gressive filtration process through different compartments and 
plant organs (Figure S11). Specifically, the rhizosphere soil, root 
endosphere and leaf endosphere exhibited a high proportion of 
taxa that were selectively retained from a nearby fungal species 
pool, with known source values exceeding 91% (Figure  S11). 
Warming significantly increased and decreased the fungal 
SAL and SRMR (particular in Ascomycota and wood sapro-
trophs migrating from bulk soil to rhizosphere soil, p < 0.01; 

and Basidiomycota migrating from stems to leaves, p < 0.05), re-
spectively (Table 1; Tables S6 and S7). Moreover, warming also 
significantly decreased the SRMR of soil saprotrophs (p < 0.001) 
and yeasts (p = 0.006) migrating from bulk soil to rhizosphere 
soil but increased that of plant pathogens (p = 0.038) migrat-
ing from roots to stems (Table 1; Tables S6 and S7). Although 
drought did not significantly affect the SAL and SRMR based on 
total fungal abundance (Table 1), it did affect the migration of 
different fungal groups (Tables S6 and S7). For example, drought 

FIGURE 4    |    Effects of warming and drought on the leaf plant pathogens and seedling traits. (a) Effects of warming and drought on the richness 
and PD (Faith's phylogenetic diversity) of plant pathogens in the leaves. Boxplots are shown, where the thick horizontal line shows the median, boxes 
represent the first and third quartiles and whiskers represent either the minimum and the maximum values of the data or 1.5 times the interquartile 
range of the data. Asterisks indicate significant results from the two-way ANOVA. **p < 0.01 and *p < 0.05. The small circles represent the raw data 
points, which are horizontally jittered to avoid overlap. CK, neither warming nor drought; D1, moderate drought alone; D2, severe drought alone; 
W, only a 3°C increase in temperature; WD1, moderate drought plus warming; WD2, severe drought in conjunction with warming. (b) The absolute 
abundance of plant pathogens (at genus level) in the leaves under different treatments. (c) Effects of warming and drought on leaf area and leaf num-
ber mediated by plant pathogens and fungal community structure. Solid and dashed arrows represent significant and non-significant relationships, 
respectively. Red and black arrows indicate positive and negative relationships, respectively. Values adjacent to arrows represent standardised path 
coefficients. R2 donates the proportion of variance explained for each variable. Significant levels of each predictor are ***p < 0.001, **p < 0.01 and 
*p < 0.05. [Colour figure can be viewed at wileyonlinelibrary.com]
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notably increased and decreased the SAL (p = 0.049) and SRMR 
(p = 0.002) of the EMF migrating from the bulk soil to the rhi-
zosphere soil, respectively (Table S7). Additionally, the SRMR of 
plant pathogens (p = 0.035) migrating from the bulk soil to the 
rhizosphere soil significantly increased in response to drought 
(Table S7).

4   |   Discussion

4.1   |   Effects of Climate Change on Fungal 
Communities Vary Across Different Compartments 
and Plant Organs

The nutrient-rich environment of bulk soil and rhizosphere soil 
serves as a magnet for a lot of microbes, rendering these habi-
tats one of the most vibrant compartments (Raaijmakers 2015). 
In this study, soil fungi exhibited greater vulnerability to cli-
mate fluctuations than that of endophytic fungi (Figure  1a; 
Figure S4). This distinction is underscored by the observed alter-
ations in soil characteristics due to climate change (Figure S5), 
which have been identified as predictive indicators of soil fungi 
(Figure  1b). The reduction in fungal richness attributed to 
warming is predominantly governed by the soil microclimate, 
which exerts a significant filtering effect on the pre-existing fun-
gal taxa present within bulk soil. Drought-induced reductions 
in soil moisture curtail the mobility of nutrients and the supply 
of substrate to microbes, and they simultaneously enhance soil 
aeration (Manzoni, Schimel, and Porporato 2012). However, the 
dual impacts of drought may collectively contribute to the de-
cline in fungal richness within the rhizosphere soil (Figure S4). 

Moreover, drought can induce changes in root exudation profile, 
which in turn affects the composition and structure of microbial 
communities indirectly (Zhalnina et al. 2018).

Unlike rhizosphere colonisation, the establishment of endo-
phytic competence necessitates specific traits and intricate in-
teractions between the soil-borne fungi of the rhizosphere and 
the host plant immune system (Turner, James, and Poole 2013). 
Due to their stress tolerance, endophytic fungal communities 
within aboveground organs may exhibit a greater degree of co-
existence (Whipps et al. 2008). Although this can explain why 
endophytic fungal richness is not affected by climate change 
(Figure S4), climate-induced changes in plant immunity, such 
as the suppression or even collapse of effector-triggered immu-
nity (Cheng, Zhang, and He 2019; Desaint et al. 2021), may pre-
cipitate dysbiosis within the endophytic microbiome (Trivedi 
et al. 2022), thereby exacerbating disease progression in various 
plant pathosystems (Cheng, Zhang, and He 2019).

Our findings elucidate the pronounced influence of climate change 
on the leaf endophytic fungal community composition (Figure 2c; 
Figure  S7), which is distinct from that observed for α-diversity 
(Figure S4), suggesting that the adaptive capacity of leaves to cli-
mate change is intricately linked to the presence of particular fun-
gal taxa within the endophytic community. For example, specific 
pathogens existed only in specific climatic treatments (Figure 4b), 
which implies that the overall diversity of fungal communities 
may not be as critical as the presence of specific, functionally 
significant fungal species in determining the response of leaves 
to changing climatic conditions. In this study, we detected an in-
crease in the pathogen diversity within the leaves under warming, 

TABLE 1    |    Treatment effects on the species abundance loss (SAL) and the species relative migration ratio (SRMR) along the soil–tree seedling 
continuum based on two-way ANOVA.

Compartment/plant organ Warming (W) Drought (D) W × D

Bulk soil
↓
Rhizosphere

SAL F 5.133 0.389 0.099

pr (> F) 0.033 0.682 0.906

SRMR F 6.832 0.155 0.191

pr (> F) 0.015 0.857 0.827

Rhizosphere
↓
Root

SAL F 6.057 0.876 0.503

pr (> F) 0.021 0.429 0.611

SRMR F 0.554 0.806 0.387

pr (> F) 0.464 0.459 0.683

Root
↓
Stem

SAL F 0.762 1.092 1.089

pr (> F) 0.391 0.352 0.353

SRMR F 0.549 0.455 2.201

pr (> F) 0.466 0.640 0.133

Stem
↓
Leaf

SAL F 3.949 0.066 0.020

pr (> F) 0.070 0.937 0.889

SRMR F 0.859 0.579 5.064

pr (> F) 0.363 0.568 0.015

Note: Significant effects (p < 0.05) are given in bold.
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as evidenced by the data obtained from absolute quantitative se-
quencing (Figure 4a), but no disease symptoms were observed on 
the leaves throughout the duration of the 20-week experiment. 
Leaves are immediately subjected to increased temperatures, 
whereas soil serves as a mitigating factor, postponing the effects of 
the temperature increase on the rhizosphere (Hoefle et al. 2024). 
Additionally, the role of certain fungal endophytes in modulat-
ing stomatal conductance on the leaf surface is well documented 
(Arnold and Engelbrecht 2007). For instance, Beauveria bassiana, 
an entomopathogenic fungus known to reside as an endophyte, 
has been shown to enhance stomatal conductance in response to 
drought stress (Ferus, Barta, and Konôpková 2019).

4.2   |   Habitat Selection Effects on Fungal 
Communities

The pronounced effects of compartments and plant organs on 
the fungal community composition observed herein for S. su-
perba (Figure 2a) have also been documented in previous studies 
involving Populus deltoides and Populus trichocarpa × deltoides 
(Cregger et  al.  2018), as well as Salix purpurea and Salix mi-
yabeana (Tardif et  al.  2016). This can be attributed to factors 
such as habitat selection (i.e., the specific microenvironments of 
different compartments and plant organs), which forces fungi 
to adopt unique adaptation strategies (Dastogeer et  al.  2020; 
Vorholt et al. 2017). Environmental filtering has emerged as a se-
lective force influencing fungal communities in these compart-
ments and plant organs (Cregger et al. 2018). Varied exposures 
to environmental conditions contribute to the diverse physico-
chemical properties observed in these compartments and plant 
organs (Fitzpatrick et al. 2020). For instance, fungal communi-
ties in bulk soil and rhizosphere soil are predominantly influ-
enced by moisture and AP (Figure 1b), while those in roots and 
leaves are shaped primarily by the mechanical properties of the 
organs and the nutrient supply from the host plant as reported 
previously (Mercado-Blanco 2015). In other words, soil predic-
tors play a minimal role in explaining the community composi-
tion of endophytes. Each compartment or plant organ harbours 
a highly distinctive microbial community, and the presence of 
obligate endophytes-specific taxa that reside within the endo-
sphere (Figure S2)—may depend strictly on the plant microenvi-
ronment for survival (Hardoim, van Overbeek, and Elsas 2008).

A marked decrease in fungal richness and absolute abundance 
was noted during the transition from soil to endophytic envi-
ronments (Figure  3b; Figure  S3), indicating the strict require-
ments for fungal specialisation to thrive within plant organs. 
This specialisation means that many fungi cannot colonise 
plant organs, allowing only a few fungi, capable of sustaining 
a symbiotic relationship with their host plant, to dominate the 
endophytic communities. This pattern of colonisation is likely 
due to the strong selectivity of the host plant and increased host 
specificity at the soil–root interface (Trivedi et al. 2020), which 
serves as a selective barrier that restricts endophytic colonisa-
tion to certain fungal groups. According to co-evolution theory, 
plants attract beneficial microorganisms by emitting signalling 
molecules and then exerting selective pressure through their 
immune systems and by providing specific nutrients and hab-
itats (Cordovez et al. 2019; Foster et al. 2017). Rhizodeposition 
and root exudation by the host plant in the root zone enhance 

the chemoattraction and colonisation of the rhizosphere soil, 
thereby fostering the development of unique and diverse rhizo-
sphere microbiomes (Bais et al. 2006). This also explains why 
rhizosphere soil had the highest fungal richness and the greatest 
number of specific ASVs (Figures S2 and S3). Additionally, rhi-
zodeposition contributes to the selection of specific endophytic 
assemblages, with substrate-driven selection in the rhizosphere 
continuing to influence the composition of the endospheric 
community (Cregger et al. 2018).

4.3   |   Indicator Sensitive to Climate Change 
and Compartments as Well as Plant Organs

Our study identified the drought-sensitive fungal phyla, including 
Glomeromycota, Chytridiomycota and Rozellomycota (Table S3). 
The decrement in Glomeromycota due to drought is particularly 
alarming, given that their role in forming extensive hyphal net-
works, which facilitate nutrient uptake and enhance soil water re-
tention (Pauwels, Graefe, and Bitterlich 2023). Chytridiomycota, 
predominantly water-film inhabiting organisms reliant on 
zoospores for dispersal, are particularly susceptible to drought 
(Volk 2013). The effects of reduced precipitation on the less char-
acterised Rozellomycota warrant further investigation. In light of 
these findings, it is imperative to continue monitoring and study-
ing the responses of these critical fungal groups to drought, which 
will inform future management strategies.

We characterised a diverse array of indicators within different 
compartments and plant organs, and many of these are plant 
pathogens. For instance, indicator groups in the bulk soil, in-
cluding Erysiphe, Moesziomyces, Acrodontium, Ganoderma and 
Teratosphaeria (Table S4), may have detrimental effects on plant 
hydraulic performance and drought tolerance (Oliva, Stenlid, 
and Martínez-Vilalta  2014), as evidenced by reduced stomatal 
conductance (Hajji, Dreyer, and Marçais 2009). Moreover, they 
can lead to the induction of tyloses that obstruct water trans-
port, resulting in decreased xylem conductance (Yadeta and 
Thomma 2013). In the rhizosphere soil, Leotiomycetes encom-
passes numerous plant pathogens (Walker et  al.  2011), poten-
tially exerting a profound impact on plant health. Likewise, 
woody plant organs become more susceptible to pathogens 
under drought stress (Jactel et al. 2012). In the stem, we detected 
Pestalotiopsis, a genus known to harbour plant pathogen respon-
sible for various aerial plant diseases (Maharachchikumbura 
et al. 2014). This pathogen is known to cause leaf lesions and 
can spread into the stems (Chen et al. 2012), further impacting 
the plant health and functionality. Conversely, we also observed 
beneficial impacts of certain fungi, such as Paraphoma in the 
stem, which has been shown to boost plant growth, especially 
under water-deficient conditions (He et al. 2021; Li et al. 2019). 
This is achieved through the improvement of total biomass, nu-
trient concentration and antioxidant enzyme activities in the 
host plants (He et al. 2021; Li et al. 2019).

4.4   |   Effects of Climate Change on the Migration 
of Fungi From Soil to Aerial Plant Organs

Elucidating the potential sources and environmental processes 
shaping plant microbiomes is crucial for understanding the 
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intricate interactions among plants, soil and microbes (Zhang 
et al. 2017). Soil acts as a reservoir, providing the initial inocu-
lum for root microbiome development, the rhizosphere serves 
as a nurturing environment and the endosphere is a restricted 
microbial habitat (Vandenkoornhuyse et al. 2015). In this study, 
it was detected that bulk soil serves as the primary reservoir 
for fungi present in plant organs (Figure  S11), corroborating 
previous findings reported in Populus tremula × tremuloides 
(Fracchia et  al.  2024), Arabidopsis (Bai et  al.  2015) and some 
crops (Xiong et al. 2021; Zarraonaindia et al. 2015). Generally, 
the adaptation of soil microbes to an endophytic lifestyle de-
pends on their ability of soil microbes to penetrate the endo-
dermis and pericycle, gain access to the xylem and achieve 
systemic colonisation (Compant, Clément, and Sessitsch 2010). 
Through a 30-day study monitoring the growth of Populus trem-
ula × tremuloides seedlings, recent findings have revealed that 
the initial chemoattraction of the dominant members of the 
shoot microbes occurred in the rhizosphere, followed by their 
subsequent transit through roots to shoots (Fracchia et al. 2024). 
Furthermore, by tracking the infection process of rice by rhizo-
bia tagged with green fluorescent protein, it has been demon-
strated that these microbes initially colonised the surface of the 
rhizoplane (Chi et  al.  2005). This was followed by endophytic 
colonisation within the roots and then ascended endophytic mi-
gration into the stems and leaves (Chi et al. 2005). Consequently, 
leaf endophytic fungi are inferred to be transported from roots 
to aboveground leaves through the internal plant tissue trans-
mission (Xiong et al. 2021). Many endophytes spread systemi-
cally within plants via the xylem to various organs, including 
leaves, where they can influence water-transport-related traits 
and affect tree hydraulic functioning (Oliva, Stenlid, and 
Martínez-Vilalta  2014). For example, vascular wilt pathogens 
(e.g., Ceratocystis of stem indicator species; Table S4) can cause 
the formation of tyloses, which block water transport in xylem 
conduits (Oliva, Stenlid, and Martínez-Vilalta 2014; Yadeta and 
Thomma 2013). Moreover, it is important to recognise that, de-
spite the absence of dispersal factors such as wind, insect visits 
and water splashing for plants grown in climate chambers, there 
remains a potential for fungal colonisation on stem epidermis 
and phylloplane through aerosols (Warren 2022). This may sub-
sequently facilitate the colonisation of the endosphere within 
stems and leaves to a certain degree.

Climate change is expected to influence the community dy-
namic of plant microbiomes by altering the initial inoculum 
from bulk soil (Bazany et al. 2022; Santos-Medellin et al. 2021), 
as illustrated in Figure S12. Water is the basic transport medium 
for microbes (Tecon and Or 2017), and as the soil becomes drier 
due to the increasing temperature, the decrease in water poten-
tial leads to a sharp decline in microbial diffusion and mobility 
(Schimel 2018). In response to water limitation, plants have the 
capacity to recruit specific microbes from the surrounding envi-
ronment to modulate the assembly of root-associated microbial 
communities (Fitzpatrick et  al.  2018). Additionally, the rhizo-
sphere can also select for the colonisation of specific microbes 
through changes in plant root exudates mediated by warming 
(Sasse, Martinoia, and Northen 2018). Ascomycota, renowned for 
their saprophytic decomposition prowess (Treseder et al. 2014), 
are pivotal in nutrient cycling. The observed reduction in the 
abundance of Ascomycota due to warming may be ascribed 
to enhanced carbon availability at the elevated temperature, 

thereby diminishing their proliferation and dominance (Zhong 
et al. 2023). Such warming-induced changes could culminate in 
a decelerated decomposition process of forest litter, with conse-
quential impacts on organic matter accumulation and nutrient 
availability. Moreover, we found that Basidiomycota is the most 
dominant fungal phylum in the underground system of S. su-
perba, contrasting with the findings in Populus deltoides and 
Populus trichocarpa × deltoides (Cregger et al. 2018), which may 
be attributed to the fact that specific tree species recruit specific 
dominant soil microbes under the guidance of root exudates 
(Berg and Smalla 2009).

Despite the fact that the prolonged drought treatment led to a 
gradual increase in seedling mortality, which necessitated the 
implementation of the pot experiment lasting only 20 weeks, 
this study effectively captured the initial and rapid ecological 
responses of microbial communities to climatic stress. Given 
previous research indicating potentially thermal adaptation in 
microbes following prolonged warming (Bradford et al. 2008), 
it is crucial to emphasise that long-term experiments are essen-
tial for gaining a comprehensive understanding of how micro-
bial communities adapt to climate change over time, potentially 
maintaining the functions microbes fulfil in the soil–plant 
continuum.

In this study, absolute abundance profiles offer a more precise 
tool for delineating microbial community dynamics in the face 
of climate change. This is particularly significant given that rel-
ative sequencing data require cautious interpretation to avoid 
the misrepresentation of microbial population dynamics (Props 
et al. 2017), in which an increase in the relative abundance of 
certain microbes inevitably leads to a corresponding decrease 
in others. Moreover, addressing the mechanisms underlying the 
responses of microbiomes to climate change along the soil–tree 
seedling continuum is vital for developing strategies aimed at 
leveraging microbial power to improve forest health. Future 
studies are needed to revolve microbial biotechnology to sus-
tainably enhance forest stability by harnessing the potential of 
microbiome-based products.
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